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Abstract

For the ®rst time, the inclusion complex of any diazirine with a cyclodextrin was studied by single crystal
X-ray di�raction. This and 2D NMR spectroscopy were employed to elucidate the structure in both the
solid state and solution. An opposite orientation of the guest inside the host molecule was revealed.
Moreover, crystallization of the neat guest enabled the ®rst X-ray di�raction of a dialkyl-substituted dia-
zirine. # 2000 Published by Elsevier Science Ltd.

Solid state reactions within crystals or con®ned spaces often di�er remarkably from
corresponding reactions in solution by surpassing them in selectivity, yield, and ease of workup.1

It has been shown lately, that upon inclusion of diazirines into cyclodextrins the chiroptical
properties of an inherently achiral carbene precursor2 as well as its reactivity can be altered
dramatically.3 Furthermore, it has been demonstrated in a model system that it is feasible to
exploit the encapsulation of a diazirine by generating carbenes that react chemospeci®cally to
monofunctionalize cyclodextrin hosts in the solid state4 and in solution.4,5 Monofunctionalized
cyclodextrins possess interesting properties for chiral discrimination and as enzyme mimics.6 To
understand and control the selectivity of photochemical reactions and to further develop selective
systems, intimate knowledge of the arrangement and structure of the supramolecular aggregates
has to be obtained. Toward this end, the structure of 2-azi-5-hydroxyadamantane7 (1) and its
inclusion complex (1@7-Cy) with b-cyclodextrin (7-Cy) have been studied in the crystal state as
well as in aqueous solution. To our knowledge, only four diazirines have been examined by single
crystal X-ray di�raction analysis.8 These diazirines, however, bear either a heteroatom or an
aromatic moiety attached to the three-membered ring and, therefore, do not re¯ect accurately the
structural and electronic properties of the adamantyl system. Though the parent 2-aziadamantane
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has been studied thoroughly spectroscopically and theoretically,9 experimental veri®cation of the
geometry is still lacking. This issue is the ®rst to be addressed in this communication.
Due to the rigidity of the adamantane skeleton, the OH substituent should not have a

pronounced e�ect on the geometry of the diazirine. Geometry optimization of 1 and of 2-azia-
damantane at the RHF/6-31G* level of theory yields the same dimensions for the diazirine ring.10

Therefore, it is reasonable to compare the structure of 1 with the unsubstituted system. The results
of X-ray di�raction analysis of diazirine of 111 as well as theoretical data for 2-aziadamantane
(taken from Ref. 9a), are listed in Table 1.

Supramolecular inclusion does not seem to a�ect the geometry of the diazirine.12 Unfortunately,
the nitrogen atom positions inside the cyclodextrin cavity are too di�use to allow for monitoring
of small changes induced by complexation.13

1@7-Cy crystallizes in a 2:2 stoichiometry with two cyclodextrin molecules facing each other
via their wider apertures (Fig. 1).14 The cages thus formed can accommodate two adamantyl
guests. The dimeric units crystallize in a chessboard arrangement15 forming slightly distorted
bilayers. Two molecules of 1 face each other at a distance of approximately 11 AÊ with the
diazirine rings well inside the cavity of the cyclodextrins. The adamantyl OH±hydrogen binds to
one O6±H on the outside of the narrower rim of a cyclodextrin in the next layer of dimers at a
distance of 2.75 AÊ . Therefore, this hydrogen bond participates in the tail-to-tail arrangement
between the cyclodextrin bilayers.

Table 1
Calculated geometry of 2-aziadamantane and theoretical and experimental data of 1

Figure 1. Single crystal X-ray structure of 1@7-Cy. View along (right) and through (left) the cyclodextrin dimer
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The arrangement in solution was determined by 2D rotating-frame Overhauser e�ect spectro-
scopy (ROESY) in D2O.16 The observed crosspeaks between the adamantyl protons and the
cyclodextrin's inner protons, H-3 and H-5, reveal an encapsulation of 1 inside the hydrophobic
cavity of 7-Cy. The intermolecular NOE of the cyclodextrin's inner protons, H-3 and H-5, by the
adamantane's CHa (next to the diazirine ring) and CH2 signals is stronger upon H-3 (3.81 ppm)
than H-5 (3.74 ppm) in all cases.17 No enhancement was observed for 7-Cy's CH2-6 at 3.83 ppm.
This clearly shows that the adamantane moiety is located at the wider opening of the toroidal-
shaped host molecule. No crosspeak can be detected between Hf and the cyclodextrin's H-5. The
inner protons H-3 and H-5 experience an up®eld shift of 0.12 and 0.07 ppm, respectively. This
shift can be attributed to the anisotropy of the diazirine's N±N double bond. The proposed
arrangement of 1@7-Cy in solution is consistent with these ®ndings (Fig. 2).

The observed switch of orientation is a rare phenomenon18,19 and can be explained by the
di�erent e�ects of the hydrogen bond in solution and in the solid state. In solution, the complex
formation is driven by entropic factors and unspeci®c hydrophobic interactions between the
apolar cavity of the cyclodextrin and the hydrocarbon skeleton bearing the apolar diazirine
function.20 Presumably, the adamantyl OH stays solvated and does not enter the apolar cavity of
the host. In contrast, the arrangement in the solid state indicates that hydrogen bond formation
between the adamantyl OH and the cyclodextrin's O6±H, providing approximately ^6 kcal mol^1

per interaction,21 becomes the structure-determining factor for the orientation of the guest inside
the crystal. The adamantyl OH±hydrogen bond probably accounts for both the complexation of
the guest at the primary side of the cyclodextrin and the chessboard arrangement of the
cyclodextrin dimers. These factors govern the inclusion mode of the guest within the host and are
consistent with the di�erent forces involved in solution and in the solid state.18,22 The observed
structural ®ndings are expected to provide an enhanced understanding for the design of
chemoselective systems for the innermolecular23 photochemistry of cyclodextrin complexes with
diazirines.
Supplementary material: The single crystal X-ray data ®les have been deposited at the

Cambridge Crystallography Data Centre, Cambridge, UK, as structures CCDC 137063 and
CCDC 137064.
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